PATN  Patent Bibliographic Information
WKU     Patent Number:                          05350577
SRC     Series Code:                            8
APN     Application Number:                     0921556
APT     Application Type:                       1
ART     Art Unit:                               188
APD     Application Filing Date:                19930715
TTL     Title of Invention:                     Isolates of bacillus thuringien
sis that are active against nematodes
ISD     Issue Date:                             19940927
NCL     Number of Claims:                       10
ECL     Exemplary Claim Number:                 1
EXA     Assistant Examiner:                     Dadio; Susan M.
EXP     Primary Examiner:                       Marx; Irene
NDR     Number of Drawings Sheets:              2
NFG     Number of Figures:                      2

INVT  Inventor Information
NAM     Inventor Name:                          Payne; Jewel M.
CTY     Inventor City:                          San Diego
STA     Inventor State:                         CA

ASSG  Assignee Information
NAM     Assignee Name:                          Mycogen Corp.
CTY     Assignee City:                          San Diego
STA     Assignee State:                         CA
COD     Assignee Type Code:                     02

RLAP  Related U.S. Application Data
COD     Parent Code:                            74
APN     Application Number:                     918345
APD     Application Filing Date:                19920721
PSC     Parent Status Code:                     01
PNO     Patent Number:                          5270448

RLAP  Related U.S. Application Data
COD     Parent Code:                            84
APN     Application Number:                     558738
APD     Application Filing Date:                19900727
PSC     Parent Status Code:                     01
PNO     Patent Number:                          5151363

CLAS  Classification
OCL     Original U.S. Classification:                   424 93461
XCL     Cross Reference Classification:                 4352525
XCL     Cross Reference Classification:                 43525231
XCL     Cross Reference Classification:                 435832
XCL     Cross Reference Classification:                 514  2
XCL     Cross Reference Classification:                 514 21
XCL     Cross Reference Classification:                 424 932
EDF     International Classification Edition Field:     5
ICL     International Classification:                   A01N 6300
ICL     International Classification:                   C12N  120
ICL     International Classification:                   A61K 3100
ICL     International Classification:                   A61K 3700
FSC     Field of Search Class:                          424
FSS     Field of Search Subclass:                       93 L;93 K
FSC     Field of Search Class:                          514
FSS     Field of Search Subclass:                       2;21
FSC     Field of Search Class:                          435
FSS     Field of Search Subclass:                       832;252.5;252.31;172.1
FSC     Field of Search Class:                          530
FSS     Field of Search Subclass:                       350

UREF  U.S. Patent Reference
PNO     Patent Number:                                  5151363
ISD     Issue Date:                                     19930900
NAM     Patentee Name:                                  Payne
OCL     Original U.S. Classification:                   435252.5

UREF  U.S. Patent Reference
PNO     Patent Number:                                  5270448
ISD     Issue Date:                                     19931200
NAM     Patentee Name:                                  Payne
OCL     Original U.S. Classification:                   424 93L

OREF  Other Reference

Ignoffo, C. M., and V. H. Dropkin (1977) "Deleterious Effects of the
Termostable Toxin of et al. on Species of Soil-Inhibiting, Myceliophagus,
and Plant-Parasitic Nematodes" Journal of the Kansas Entomological Society
50(3):394-398.

Prichard, R. K., C. A. Hall, J. D. Kelly, I. C. A. Martin, and A. D. Donald
(1980) "The Problem of Anthelmintic Resistance in Nematodes" Australian
Veterinary Journal 56:239-251.

Coles, G. C. (1986) "Anthelmintic Resistance in Sheep" Veterinary Clinics
of North America: Food Animal Practice 2(2):423-432.

Bottjer, Kurt P., Leon W. Bone, and Sarjeet S. Gill (1985) "Nematode:
Susceptability of the Egg to Bacillus thuringiensis Toxins" Experimental
Parasitology 60:239-244.

Ciordia, H., and W. E. Bizzell (1961) "A Preliminary Report on the Effects
of Bacillus thuringiensis var. thuringiensis Berliner on the Development
of the Free-Living Stages of Some Cattle Nematodes" Journal of
Parasitology 47:41 [abstract].

LREP  Legal Information
FRM     Legal Firm:                             Saliwanchik & Saliwanchik

ABST  Abstract

The invention concerns novel isolates of Bacillus thuringiensis (B.t.)
which contain a toxin(s) which is active against nematodes. This B.t.
toxin(s) or B.t. isolate(s) can be used to treat animals and plants
hosting susceptible nematodes.

PARN  Parent Case Text

     This is a divisional of application Ser. No. 07/918,345, filed Jul. 21,
1992, now U.S. Pat. No. 5,270,448, which is a divisional application Ser.
No. 07/558,738, filed Jul. 27, 1990, now U.S. Pat. No. 5,151,363.

BSUM  Brief Summary

                        BACKGROUND OF THE INVENTION

     Regular use of chemicals to control unwanted organisms can select for drug
resistant strains. This has occurred in many species of economically
important insects and has also occurred in nematodes of sheep, goats, and
horses. The development of drug resistance necessitates a continuing
search for new control agents having different modes of action.

     In recent times, the accepted methodology for control of nematodes has
centered around the drug benzimidazole and its congeners. The use of these
drugs on a wide scale has led to many instances of resistance among
nematode populations (Prichard, R. K. et al. [1980] "The problem of
anthelmintic resistance in nematodes," Austr. Vet. J. 56:239-251; Coles,
G. C. [1986] "Anthelmintic resistance in sheep," In Veterinary Clinics of
North America: Food Animal Practice, Vol 2:423-432 [Herd, R. P., eds.] W.
B. Saunders, New York). There are more than 100,000 described species of
nematodes.

     The bacterium Bacillus thuringiensis (B.t.) produces .delta.-endotoxin
polypeptides that have been shown to have activity against a rapidly
growing number of insect species. The earlier observations of toxicity
only against lepidopteran insects have been expanded with descriptions of
B.t. isolates with toxicity to dipteran and coleopteran insects. These
toxins are deposited as crystalline inclusions within the organism. Many
strains of B.t. produce crystalline inclusions with no demonstrated
toxicity to any insect tested.

     A small number of research articles have been published about the effects
of .delta.-endotoxins from B. thuringiensis species on the viability of
nematode eggs. Bottjer, Bone, and Gill (Experimental Parasitology
60:239-244, 1985) have reported that B.t. kurstaki and B.t. israelensis
were toxic in vitro to eggs of the nematode Trichostrongylus
colubriformis. In addition, 28 other B.t. strains were tested with widely
variable toxicities. The most potent had LDs.sub.50 values in the nanogram
range. Ignoffo and Dropkin (Ignoffo, C. M. and Dropkin, V. H. [1977] J.
Kans. Entomol. Soc. 50:394-398) have reported that the thermostable toxin
from Bacillus thuringiensis (beta exotoxin) was active against a
free-living nematode, Panagrellus redivivus (Goodey); a plant-parasitic
nematode, Meloidogyne incognita (Chitwood); and a fungus-feeding nematode,
Aphelenchus avena (Bastien). Beta exotoxin is a generalized cytotoxic
agent with little or no specificity. Also, H. Ciordia and W. E. Bizzell
(Jour. of Parasitology 47:41 [abstract] 1961) gave a preliminary report on
the effects of B. thuringiensis on some cattle nematodes.

     At the present time there is a need to have more effective means to contro
l
the many nematodes that cause considerable damage to susceptible hosts.
Advantageously, such effective means would employ biological agents.

                       BRIEF SUMMARY OF THE INVENTION

     The subject invention concerns novel isolates of Bacillus thuringiensis
that are active against nematodes. Test results for the nematode
Panagrellus redivivus are disclosed. This nematode is commonly called the
beer-mat nematode. It is a common free-living nematode that is relative
easy to maintain in the laboratory. It is used as an indicator (model) of
nematode activity.

     The B.t. isolates of the invention can be grown and the .delta.-endotoxin
that is produced recovered by standard procedures. The recovered toxin or
the B.t. isolates can be formulated using standard procedures associated
with the use of nematicidal products.

     The novel B.t. isolates are named B.t. strain PS80JJ1, B.t. strain PS158D5
,
B.t. strain PS167P, B.t. strain PS169E, B.t. strain PS177F1, B.t. strain
PS177G, B.t. strain PS204G4, and B.t. strain PS204G6.

DRWD  Drawing Description

                      BRIEF DESCRIPTION OF THE DRAWING

     FIG. 1- Photograph of 9% SDS polyacrylamide gel electrophoresis showing
alkali-soluble proteins of nematode active strains.

 Gel A: Lane (1) Protein standard, (2) PS17, (3) PS33F2, (4) PS52A1, (5)
  PS63B, (6), PS69D1, (7) PS80JJ1, (8) PS177F1, (9) PS177G, (10) PS204G6,
  (11) Protein standard.

 Gel B: Lane (1) Protein standard, (2) PS17, (3) PS33F2, (4) PS52A1, (5)
  PS63B, (6), PS69D1, (7) PS169E, (S) PS167P, (9) PS204G4, (10) PS158D5,
  (11) Protein standard.

DETD  Detail Description

                    DETAILED DISCLOSURE OF THE INVENTION

     The novel B.t. isolates of the subject invention have been deposited in th
e
permanent collection of the Agricultural Research Service Patent Culture
Collection (NRRL), Northern Regional Research Center, 1915 North
University Street, Peoria, Ill. 61604, USA. The accession numbers are as
follows:

TBL  ______________________________________
     Culture        Repository No.
                                Deposit Date
     ______________________________________
     B.t. strain PS80JJ1
                    NRRL B-18679
                                July 17, 1990
     B.t. strain PS158D5
                    NRRL B-18680
                                July 17, 1990
     B.t. strain PS167P
                    NRRL B-18681
                                July 17, 1990
     B.t. strain PS169E
                    NRRL B-18682
                                July 17, 1990
     B.t. strain PS177F1
                    NRRL B-18683
                                July 17, 1990
     B.t. strain PS177G
                    NRRL B-18684
                                July 17, 1990
     B.t. strain PS204G4
                    NRRL B-18685
                                July 17, 1990
     B.t. strain PS204G6
                    NRRL B-18686
                                July 17, 1990
     ______________________________________

     The subject cultures have been deposited under conditions that assure that
access to the cultures will be available during the pendency of this
patent application to one determined by the Commissioner of Patents and
Trademarks to be entitled thereto under 37 CFR 1.14 and 35 USC 122. The
deposits are available as required by foreign patent laws in countries
wherein counterparts of the subject application, or its progeny, are
filed. However, it should be understood that the availability of a deposit
does not constitute a license to practice the subject invention in
derogation of patent rights granted by governmental action.

     Further, the subject culture deposits will be stored and made available to
the public in accord with the provisions of the Budapest Treaty for the
Deposit of Microorganisms, i.e., they will be stored with all the care
necessary to keep them viable and uncontaminated for a period of at least
five years after the most recent request for the furnishing of a sample of
the deposit, and in any case, for a period of at least 30 (thirty) years
after the date of deposit or for the enforceable life of any patent which
may issue disclosing the cultures. The depositor acknowledges the duty to
replace the deposits should the depository be unable to furnish a sample
when requested, due to the condition of the deposit(s). All restrictions
on the availability to the public of the subject culture deposits will be
irrevocably removed upon the granting of a patent disclosing them.

     The novel B.t. isolates of the invention show activity against the tested
nematode. It is expected that these isolates would be active against other
nematodes as disclosed herein. The group of diseases described generally
as helminthiasis is due to infection of an animal host with parasitic
worms known as helminths. Helminthiasis is a prevalent and serious
economic problem in domesticated animals such as swine, sheep, horses,
cattle, goats, dogs, cats and poultry. Among the helminths, the group of
worms described as nematodes causes wide-spread and often times serious
infection in various species of animals. The most common genera of
nematodes infecting the animals referred to above are Haemonchus,
Trichostrongylus, Ostertagia, Nematodirus, Cooperia, Ascaris Bunostomum,
Oesophagostomum, Chabertia, Trichuris., Strongylus, Trichonema,
Dictyocaulus, Capillaria, Heterakis, Toxocara, Ascaridia, Oxyuris,
Ancylostoma, Uncinaria, Toxascaris, Caenorhabditis, and Parascaris.
Certain of these, such as Nematodirus, Cooperia, and Oesophagostomum,
attack primarily the intestinal tract, while others, such as Dictyocaulus
are found in the lungs. Still other parasites may be located in other
tissues and organs of the body.

     The toxins encoded by the novel B.t. genes of the invention are useful as
nematocides for the control of soil nematodes and plant parasites selected
from the genera Bursaphalenchus, Criconemella, Ditylenchus, Globodera,
Helicotylenchus, Heterodera, Meloidogyne, Pratylenchus, Radolpholus,
Rotelynchus, Panagrellus, or Tylenchus.

     Alternatively, because some plant parasitic nematodes are obligate
parasites, genes coding for nematocidal B.t. toxins can be engineered into
plant cells to yield nematode-resistant plants. The methodology for
engineering plant cells is well established (cf. Nester, E. W., Gordon, M.
P., Amasino, R. M. and Yanofsky, M. F., Ann. Rev. Plant Physiol.
35:387-399, 1984).

     The B.t. toxins of the invention can be administered orally in a unit
dosage form such as a capsule, bolus or tablet, or as a liquid drench when
used as an anthelmintic in mammals. The drench is normally a solution,
suspension or dispersion of the active ingredient, usually in water,
together with a suspending agent such as bentonite and a wetting agent or
like excipient. Generally, the drenches also contain an antifoaming agent.
Drench formulations generally contain from about 0.001 to 0.5% by weight
of the active compound. Preferred drench formulations may contain from
0.01 to 0.1% by weight, the capsules and boluses comprise the active
ingredient admixed with a carrier vehicle such as starch, talc, magnesium
stearate, or dicalcium phosphate.

     Where it is desired to administer the tom compounds in a dry, solid unit
dosage form, capsules, boluses or tablets containing the desired amount of
active compound usually are employed. These dosage forms are prepared by
intimately and uniformly mixing the active ingredient with suitable finely
divided diluents, fillers, disintegrating agents and/or binders such as
starch, lactose, talc, magnesium stearate, vegetable gums and the like.
Such unit dosage formulations may be varied widely with respect to their
total weight and content of the antiparasitic agent, depending upon the
factors such as the type of host animal to be treated, the severity and
type of infection and the weight of the host.

     When the active compound is to be administered via an animal feedstuff, it
is intimately dispersed in the feed or used as a top dressing or in the
form of pellets which may then be added to the finished feed or,
optionally, fed separately. Alternatively, the antiparasitic compounds may
be administered to animals parenterally, for example, by intraluminal,
intramuscular, intratracheal, or subcutaneous injection, in which event
the active ingredient is dissolved or dispersed in a liquid carrier
vehicle. For parenteral administration, the active material is suitably
admixed with an acceptable vehicle, preferably of the vegetable off
variety, such as peanut off, cotton seed off and the like. Other
parenteral vehicles, such as organic preparations using solketal,
glycerol, formal and aqueous parenteral formulations, are also used. The
active compound or compounds are dissolved or suspended in the parenteral
formulation for administration; such formulations generally contain from
0.005 to 5% by weight of the active compound.

     When the toxins are administered as a component of the feed of the animals
,
or dissolved or suspended in the drinking water, compositions are provided
in which the active compound or compounds are intimately dispersed in an
inert carrier or diluent. By inert carrier is meant one that will not
react with the antiparasitic agent and one that may be administered safely
to animals. Preferably, a carrier for feed administration is one that is,
or may be, an ingredient of the animal ration.

     Suitable compositions include feed premixes or supplements in which the
active ingredient is present in relatively large amounts and which are
suitable for direct feeding to the animal or for addition to the feed
either directly or after an intermediate dilution or blending step.
Typical carriers or diluents suitable for such compositions include, for
example, distillers' dried grains, corn meal, citrus meal, fermentation
residues, ground oyster shells, wheat shorts, molasses solubles, corn cob
meal, edible bean mill feed, soya grits, crushed limestone and the like.

     In addition to having anthelminthic activity within the digestive tract of
mammals, spores from nematicidal B.t. isolates will pass through the
animals'  digestive tract, germinate and multiply in the feces, and
thereby provide additional control of nematode larva which hatch and
multiply therein.

     The gene(s) from the novel B.t. isolates of the subject invention can be
introduced into microbes capable of occupying, surviving in, and
proliferating in the phytosphere of plants according to the procedure of
European Patent Application 0 200 344. Upon ingestion of such a plant by
an animal hosting a nematode, the nematode-active toxin becomes available
in the animal host to control the nematode infestation.

     The toxin genes from the isolates of the subject invention can be
introduced into a wide variety of microbial hosts. Expression of the toxin
gene results, directly or indirectly, in the intracellular production and
maintenance of the nematicide. With suitable hosts, e.g., Pseudomonas, the
microbes can be applied to the situs of nematodes where they will
proliferate and be ingested by the nematodes. The result is a control of
the nematodes. Alternatively, the microbe hosting the toxin gene can be
treated under conditions that prolong the activity of the toxin produced
in the cell. The treated cell then can be applied to the environment of
target pest(s). The resulting product retains the toxicity of the B.t.
toxin.

     Where the B.t. toxin gene is introduced via a suitable vector into a
microbial host, and said host is applied to the environment in a living
state, it is essential that certain host microbes be used. Microorganism
hosts are selected which are known to occupy the "phytosphere"
(phylloplane, phyllosphere, rhizosphere, and/or rhizoplane) of one or more
crops of interest. These microorganisms are selected so as to be capable
of successfully competing in the particular environment (crop and other
insect habitats) with the wild-type microorganisms, provide for stable
maintenance and expression of the gene expressing the polypeptide
pesticide, and, desirably, provide for improved protection of the
nematicide from environmental degradation and inactivation.

     A large number of microorganisms are known to inhabit the phylloplane (the
surface of the plant leaves) and/or the rhizosphere (the soil surrounding
plant roots) of a wide variety of important crops. These microorganisms
include bacteria, algae, and fungi. Of particular interest are
microorganisms, such as bacteria, e.g., genera Pseudomonas, Erwinia,
Serratia, Klebsiella, Xanthomonas, Streptomyces, Rhizobium,
Rhodopseudomonas, Methylophilius, Agrobacterium, Acetobacter,
Lactobacillus, Arthrobacter, Azotobacter, Leuconostoc, and Alcaligenes;
fungi, particularly yeast, e.g., genera Saccharomyces, Cryptococcus,
Kluyveromyces, Sporobolomyces, Rhodotorula, and Aureobasidium. Of
particular interest are such phytosphere bacterial species as Pseudomonas
syringae, Pseudomonas fluorescens, Serratia marcescens, Acetobacter
xylinum, Agrobacterium tumefaciens, Rhodopseudomonas spheroides,
Xanthomonas campestris, Rhizobium melioti, Alcaligenes entrophus, and
Azotobacter vinlandii; and phytosphere yeast species such as Rhodotorula
rubra, R. glutinis, R. marina, R. aurantiaca, Cryptococcus albidus, C.
diffiuens, C, laurentii, Saccharomyces rosei, S. pretoriensis, S.
cerevisiae, Sporobolomyces roseus, S. odorus, Kluyveromyces veronae, and
Aureobasidium pollulans. Of particular interest are the pigmented
microorganisms.

     A wide variety of ways are known and available for introducing the B.t.
genes expressing the toxin into the microorganism host under conditions
which allow for stable maintenance and expression of the gene. The
transformants can be isolated in accordance with conventional ways,
usually employing a selection technique, which allows for selection of the
desired organism as against unmodified organisms or transferring
organisms, when present. The transformants then can be tested for
nematicidal activity.

     Suitable host cells, where the nematicide-containing cells will be treated
to prolong the activity of the toxin in the cell when the then treated
cell is applied to the environment of target pest(s), may include either
prokaryotes or eukaryotes, normally being limited to those cells which do
not produce substances toxic to higher organisms, such as mammals.
However, organisms which produce substances toxic to higher organisms
could be used, where the toxin is unstable or the level of application
sufficiently low as to avoid any possibility of toxicity to a mammalian
host. As hosts, of particular interest will be the prokaryotes and the
lower eukaryotes, such as fungi. Illustrative prokaryotes, both
Gram-negative and -positive, include Enterobacteriaceae, such as
Escherichia, Erwinia, Shigella, Salmonella., and Proteus; Bacillaceae;
Rhizobiceae, such as Rhizobium; Spirillaceae, such as photobacterium,
Zymomonas, Serratia, Aeromonas, Vibrio, Desulfovibrio, Spirillum;
Lactobacillaceae; Pseudomonadaceae, such as Pseudomonas and Acetobacter;
Azotobacteraceae and Nitrobacteraceae. Among eukaryotes are fungi, such as
Phycomycetes and Ascomycetes, which includes yeast, such as Saccharomyces
and Schizosaccharomyces; and Basidiomycetes yeast, such as Rhodotorula,
Aureobasidium, Sporobolomyces, and the like.

     Characteristics of particular interest in selecting a host cell for
purposes of production include ease of introducing the B.t. gene into the
host, availability of expression systems, efficiency of expression,
stability of the nematicide in the host, and the presence of auxiliary
genetic capabilities. Characteristics of interest for use as a nematicide
microcapsule include protective qualities for the nematicide, such as
thick cell walls, pigmentation, and intracellular packaging or formation
of inclusion bodies; leaf affinity; lack of mammalian toxicity;
attractiveness to pests for ingestion; ease of killing and fixing without
damage to the toxin; and the like. Other considerations include ease of
formulation and handling, economics, storage stability, and the like.

     Host organisms of particular interest include yeast, such as Rhodotorula
sp., Aureobasidium sp., Saccharomyces sp., and Sporobolomyces sp.;
phylloplane organisms such as Pseudomonas sp., Erwinia sp. and
Flavobactefium sp.; or such other organisms as Escherichia, Lactobacillus
sp., Bacillus sp., and the like. Specific organisms include Pseudomonas
aeruginosa, Pseudomonas fluorescens, Saccharomyces cerevisiae, Bacillus
thuringiensis. Escherichia coli, Bacillus subtillis, and the like.

     The cell will usually be intact and be substantially in the proliferative
form when treated, rather than in a spore form, although in some instances
spores may be employed.

     Treatment of the microbial cell, e.g., a microbe containing the B.t. toxin
gene, can be by chemical or physical means, or by a combination of
chemical and/or physical means, so long as the technique does not
deleteriously affect the properties of the toxin, nor diminish the
cellular capability in protecting the toxin. Examples of chemical reagents
are halogenating agents, particularly halogens of atomic no. 17-80. More
particularly, iodine can be used under mild conditions and for sufficient
time to achieve the desired results. Other suitable techniques include
treatment with aldehydes, such as formaldehyde and glutaraldehyde;
anti-infectives, such as zephiran chloride and cetylpyridimum chloride;
alcohols, such as isopropyl and ethanol; various histologic fixatives,
such as Bouin's fixative and Helly's fixative (See: Humason, Gretchen L.,
Animal Tissue Techniques, W. H. Freeman and Company, 1967); or a
combination of physical (heat) and chemical agents that preserve and
prolong the activity of the toxin produced in the cell when the cell is
administered to the host animal. Examples of physical means are short
wavelength radiation such as gamma-radiation and X-radiation, freezing, UV
irradiation, lyophilization, and the like.

     The cells generally will have enhanced structural stability which will
enhance resistance to environmental conditions. Where the pesticide is in
a proform, the method of inactivation should be selected so as not to
inhibit processing of the proform to the mature form of the pesticide by
the target pest pathogen. For example, formaldehyde will crosslink
proteins and could inhibit processing of the proform of a polypeptide
pesticide. The method of inactivation or killing retains at least a
substantial portion of the bio-availability or bioactivity of the toxin.

     The cellular host containing the B.t. nematicidal gene may be grown in any
convenient nutrient medium, where the DNA construct provides a selective
advantage, providing for a selective medium so that substantially all or
all of the cells retain the B.t. gene. These cells may then be harvested
in accordance with conventional ways. Alternatively, the cells can be
treated prior to harvesting.

     The B.t. cells may be formulated in a variety of ways. They may be employe
d
as wettable powders, granules or dusts, by mixing with various inert
materials, such as inorganic minerals (phyllosilicates, carbonates,
sulfates, phosphates, and the like) or botanical materials (powdered
corncobs, rice hulls, walnut shells, and the like). The formulations may
include spreader-sticker adjuvants, stabilizing agents, other pesticidal
additives, or surfactants. Liquid formulations may be aqueous-based or
non-aqueous and employed as toms, gels, suspensions, emulsifiable
concentrates, or the like. The ingredients may include rheological agents,
surfactants, emulsifiers, dispersants, or polymers.

     The nematicide concentration will vary widely depending upon the nature of
the particular formulation, particularly whether it is a concentrate or to
be used directly. The nematicide will be present in at least 1% by weight
and may be 100% by weight. The dry formulations will have from about 1-95%
by weight of the nematicide while the liquid formulations will generally
be from about 1-60% by weight of the solids in the liquid phase. The
formulations will generally have from about 10.sup.2 to about 10.sup.4
cells/mg. These formulations will be administered at about 50 mg (liquid
or dry) to 1 kg or more per hectare.

     The formulations can be applied to the environment of the nematodes, e.g.,
plants, soil or water, by spraying, dusting, sprinkling, or the like.

     Following are examples which illustrate procedures, including the best
mode, for practicing the invention. These examples should not be construed
as limiting. All percentages are by weight and all solvent mixture
proportions are by volume unless otherwise noted.

                    EXAMPLE 1 --CULTURING B.t. isolates

     A subculture of B.t. isolate can be used to inoculate the following medium
,
a peptone, glucose, salts medium:

TBL  ______________________________________
     Bacto Peptone          7.5    g/l
     Glucose                1.0    g/l
     KH.sub.2 PO.sub.4      3.4    g/l
     K.sub.2 HPO.sub.4      4.35   g/l
     Salt Solution          5.0    ml/l
     CaCl.sub.2 Solution    5.0    ml/l
     Salts Solution (100 ml)
     MgSO.sub.4.7H.sub.2 O  2.46   g
     MnSO.sub.4.H.sub.2 O   0.04   g
     ZnSO.sub.4.7H.sub.2 O  0.28   g
     FeSO.sub.4.7H.sub.2 O  0.40   g
     CaCl.sub.2 Solution (100 ml)
     CaCl.sub.2.2H.sub.2 O  3.66   g
     pH 7.2
     ______________________________________

     The salts solution and CaCl.sub.2 solution are filter-sterilized and added
to the autoclaved and cooked broth at the time of inoculation. Flasks are
incubated at 30.degree. C. on a rotary shaker at 200 rpm for 64 hr.

     The above procedure can be readily scaled up to large fermentors by
procedures well known in the art.

     The B.t. spores and crystals, obtained in the above fermentation, can be
isolated by procedures well known in the art. A frequently-used procedure
is to subject the harvested fermentation broth to separation techniques,
e.g., centrifugation.

  EXAMPLE 2--ACTIVITY OF BACILLUS THURINGIENSIS ISOLATES AGENT PANAGRELLUS
   REDIVIVUS

     Worms are collected in a tube and allowed to settle for about 15 minutes,
and the water is decanted and replaced with fresh water three or four
times until the water remains clear. 250 .mu.l rinsed nematodes (20-30
worms), and 100 .mu.l of a spore/crystal suspension are added to 650 .mu.l
water in each well of tray. Nematodes are counted and the numbers
recorded. After four days, the live worms are counted and percent
mortality is calculated.

                             Bioassay Results:

TBL  ______________________________________
     Prior art (U.S. Ser. No. 084,653, filed August 12, 1987)
                     Mortality
     ______________________________________
     B.t. strain No.
     PS17              90%
     PS33F2            30%
     PS52A1            100%
     PS63B             92%
     PS69D1            100%
     Novel B.t. strain No.
     PS80JJ1           99%
     PS158D5           99%
     PS167P            96%
     PS169E            100%
     PS177F1           96%
     PS177G            100%
     PS204G4           100%
     PS204G6           100%
     Control            0%
     ______________________________________

     The following table shows the molecular mass of the alkali-soluble protein
s
in each novel nematode-active strain, as compared to prior art B.t.
strains.

TBL  ______________________________________
     Prior Art Nematode-Active Strains
                     Approximate Molecular Mass
     B.t. Strain     of Proteins (kDa)
     ______________________________________
     PS17            155, 145, 135
     PS33F2          140, 94, 86, 68, 65, 62
     PS52A1          57, 45
     PS63B           84, 82, 78
     PS69D1          135, 46, 32
     ______________________________________
     New Nematode-Active Strains
                     Approximate Molecular Mass
     Novel B.t. Strain
                     of Proteins (kDa)
     ______________________________________
     PS80JJ1         130, 90, 47, 37
     PS158D5         80
     PS167P          120
     PS169E          150, 128, 33
     PS177F1         140, 116, 103, 62
     PS177G          135, 125, 107, 98, 62
     PS204G4         105, 98, 90, 60, 44, 37
     PS204G6         23, 21
     ______________________________________

CLMS  Claims
STM     Claim Statement:                        I claim:
NUM     Claim Number:                           1.

     1. A process for treating an animal infected with a nematode which
comprises administering to said animal a nematode-controlling effective
amount of a Bacillus thuringiensis isolated or spores, crystals or
delta-endotoxins produced by said Bacillus thuringiensis isolate, wherein
said Bacillus thuringiensis isolate is selected from the group consisting
of Bacillus thuringiensis strain PS80JJ1, Bacillus thuringiensis strain
PS158D5, Bacillus thuringiensis strain PS167P, Bacillus thuringiensis
strain PS169E, Bacillus thuringiensis strain PS177F1, Bacillus
thuringiensis strain PS177G, Bacillus thuringiensis strain PS204G4,
Bacillus thuringiensis strain PS204G6 and mutants thereof which retain
activity against said nematode.
NUM     Claim Number:                           2.

     2. The process, according to claim 1, wherein said isolate is Bacillus
thuringiensis strain PS80JJ1.
NUM     Claim Number:                           3.

     3. The process, according to claim 1, wherein said isolate is Bacillus
thuringiensis strain PS158D5.
NUM     Claim Number:                           4.

     4. The process, according to claim 1, wherein said isolate is Bacillus
thuringiensis strain PS167P.
NUM     Claim Number:                           5.

     5. The process, according to claim 1, wherein said isolate is Bacillus
thuringiensis strain PS169E.
NUM     Claim Number:                           6.

     6. The process, according to claim 1, wherein said isolate is Bacillus
thuringiensis strain PS177F1.
NUM     Claim Number:                           7.

     7. The process, according to claim 1, wherein said isolate is Bacillus
thuringiensis strain PS177G.
NUM     Claim Number:                           8.

     8. The process, according to claim 1, wherein said isolate is Bacillus
thuringiensis strain PS204G4.
NUM     Claim Number:                           9.

     9. The process, according to claim 1, wherein said isolate is Bacillus
thuringiensis strain PS204G6.
NUM     Claim Number:                           10.

     10. The process, according to claim 1, wherein the nematode is selected
from genera belonging to the group consisting of Haemonchus,
Trichostrongylus, Ostertagia, Nematodirus, Cooperia, Ascaris, Bunostomum,
Oesophagostomum, Chabertia, Trichuris, Strongylus, Trichonema,
Dictyocaulus, Capillaria, Heterakis, Toxocara, Ascaridia, Oxyuris,
Ancylostoma, Uncinaria, Toxascaris, Caenorhabditis, and Parascaris.