

NEM 204: RECOGNIZING A NEMATODE PROBLEM

ESTIMATED LOSSES DUE TO NEMATODES IN CALIFORNIA:

CROP	ESTI- MATED % LOSS	ACRES	FARM \$ VALUE	\$ LOSS
FIELD				
CROPS	6	1,091,166	2,791,345,185	307,047,970
FRUITS				
& NUTS	12	1,883,204	4,026,765,267	483,211,832
VEGE-				
TABLES	11	6,402,613	2,947,240,705	176,834,442
ORNAMEN-				
TALS	10		1,185,878,000	<u>118,587,800</u>
TOTAL				1,085,682,045

TOTAL CALIFORNIA CASH FARM VALUE = \$16,838,870,235

(NOTE: % LOSS ESTIMATES ARE FROM THE SOCIETY OF NEMATOLOGISTS FOR U.S. AS A WHOLE)

ESTIMATED LOSSES DUE TO NEMATODES IN CALIFORNIA:

CROP	ESTI- MATED % LOSS	ACRES	FARM \$	\$ LOSS VALUE
CITRUS	15	326,660	1,181,597,142	177,239,571
COTTON	5	1,280,071	1,008,713,000	50,435,650
POTATOES	10	51,977	157,981,100	15,798,110
TOMATOES	15	252,968	477,111,728	71,566,759

(NOTE: % LOSS ESTIMATES ARE FROM THE USDA FOR U.S. AS A WHOLE)

1991 California growers' economic losses from nematode damage on the nine crops with greatest historic usage of 1,3-D = \$106.8 million (Landels, 1992)

Millions of Dollars	Lost
ROOT-KNOT NEMATO	DDE (RKN)
Tomatoes	13.4
Cotton	9.8
Sweet potatoes	7.5
Potatoes	0.4
Carrots	15.1
SUGARBEET CYST &	(RKN)
Broccoli	15.7
Cauliflower	7.9
Sugar beets	6.1
Brussel sprouts	0.7

ROOT-KNOT NEMATODE (MELOIDOGYNE SP.) ON CARROT

IN 1991, 18.7 MILLION POUNDS OF METHYL BROMIDE WERE USED IN CALIFORNIA:

<u>USE</u>	<u>PERCENT</u>
STRAWBERRY FIELDS	24
STRUCTURAL FUMIGATION	18
GREENHOUSE SOIL - NURSERY CROPS	11
GRAPES - PREPLANT & POSTHARVEST	10
STONE FRUITS - PREPLANT & POSTHARVE	ST 8
CARROTS	7

THE MOST COMMON GENERA OF PLANT PARASITIC NEMATODES IN CALIFORNIA:

ECTOPARASITES

Trichodorus - Stubby Root* Xiphinema - Dagger* Longidorus - Needle* Helicotylenchus - Spiral Mesocriconema - Ring Paratylenchus - Pin Hemicycliophora - Sheath

SOME GENERA CONTAIN SEVERAL IMPORTANT SPECIES *Vectors of plant viruses

MIGRATORY ENDOPARASITES

Pratylenchus - Lesion Ditylenchus - Stem & Bulb Aphelenchoides - Foliar

SEDENTARY ENDOPARASITES

Meloidogyne - Root Knot *Anguina* - Seed & Leaf Gall *Tylenchulus* - Citrus *Heterodera* - Cyst

SYMPTOMS & SIGNS OF NEMATODE DAMAGE:

VISIBLE ABOVE GROUND -

Stunting Chlorosis Mid-day Wilting Leaf Drop Small Fruit Yellowing Curling and Twisting of Leaves and Stems Patches of Poor Growth in Field Lack of Response to Treatment Premature Maturity Delayed Maturity Reduced Yield "Unthriftiness"

ROOT SYMPTOMS -

Galls or Swellings Stubby Roots Lesions or Dark Spots Stunting "Dirty Roots"

TRICHODORUS OR PARATRICHODORUS (STUBBY ROOT NEMATODE) ON ONIONS AND CHIVES

DAGGER NEMATODE (XIPHINEMA INDEX)

DAGGER NEMATODE (X. DIVERSICAUDATUM) ON ROSE

DAGGER NEMATODE (XIPHINEMA INDEX) ROOT GALLS

DAGGER NEMATODE (XIPHINEMA INDEX) VECTORS GRAPEVINE FANLEAF VIRUS

VIRUS SYMPTOMS: LEAF MALFORMATIONS YELLOW MOSAIC OF LEAVES VEINBANDING

DAGGER NEMATODE (XIPHINEMA INDEX) ON GRAPE

VIRUS SYMPTOMS: SMALL BUNCHES POOR FRUIT SET IRREGULAR RIPENING

DAGGER NEMATODE (XIPHINEMA INDEX) ON GRAPE

VIRUS SYMPTOMS: ABNORMAL SHOOT BRANCHING

XIPHINEMA INDEX - VECTORS GRAPEVINE FANLEAF VIRUS

THE VIRUS IS: BOUND TO ESOPHAGEAL LINING LOST AT MOLT DOES NOT PASS THRU EGG STAGE DOES NOT REPLICATE IN NEMATODE

RING NEMATODE (MESOCRICONEMA **XENOPLAX)**

PEACH

RING NEMATODE - BACTERIAL CANKER COMPLEX

Susceptible - almond, apricot, cherry, kiwi, nectarine, peach, pear, plum, prune. Bacteria (Pseudomonas syringae) is usually present in orchards. Ring nematode stresses trees. Stress predisposes trees to bacterial canker. Usually associated with younger trees. Usually associated with sandy soils.

INFESTED

Mescocriconema, Criconemella,

HEALTHY

RING NEMATODE (MESOCRICONEMA XENOPLAX) ON GRAPE

TURFGRASS NURSERY

SHEATH NEMATODE (HEMICYCLIOPHORA ARENARIA)

BEFORE FUMIGATION

AFTER FUMIGATION

STEM AND BULB NEMATODE (DITYLENCHUS DIPSACI) ON DAFFODIL

DITYLENCHUS DIPSACI (STEM AND BULB NEMATODE) ON GARLIC

DITYLENCHUS DESTRUCTOR (STEM AND BULB NEMATODE) ON POTATO

FOLLIAR NEMATODE (APHELENCHOIDES FRAGARIAE) AFRICAN VIOLET (HEALTHY IN CENTER)

EASTER LILY

FOLIAR NEMATODE (APHELENCHOIDES FRAGARIAE)

CHRYSANTHEMUM

STRAWBERRY

ROOT-KNOT NEMATODE

ROOT-KNOT NEMATODE (MELOIDOGYNE SP.) ON SWEET POTATOES

WATERMELON

ROOT-KNOT NEMATODE (*MELOIDOGYNE SP*) ON GRAPE

CHECK ON LEFT, NEMACUR TREATMENT ON RIGHT

SEED AND LEAF GALL NEMATODE

HETERODERA SCHACHTII (SUGARBEET CYST NEMATODE)

HETERODERA SCHACHTII (SUGARBEET CYST NEMATODE)

CITRUS NEMATODE (TYLENCHULUS SEMIPENETRANS)

SAMPLING FOR NEMATODES:

HOW NEMATODES INJURE PLANTS:

- 1. Mechanical injury penetration and movement through tissues
- 2. Cellular changes
 - A. Death of cells (necrosis)
 - B. Changes in growth of cells
- 3. Physiological changes in host A. Interruption in uptake and flow of water
- and nutrients from roots
- B. Interaction in flow of food from leaves to roots
- 4. Create openings for entry of other microorganisms
- 5. Interaction with other disease producing agents 6. Transmission of other disease producing agents
- 7. Increase susceptibility to environmental stress

NEMATODES ARE NOT TYPICALLY **UNIFORMLY DISTRIBUTED -MULTIPLE SUBSAMPLES / SAMPLE**

pcok

SAMPLING FOR NEMATODES:

Sample in root zone where moisture is present Place soil and roots into plastic bag Soil from several places can be combined Collect about 1 quart of soil and roots Sample healthy areas also and place in separate bag Seal bags and keep cool (do not freeze) Label bags - name, address, sample location, date, site history Notify laboratory that is to receive samples

EXTRACTION EQUIPMENT & PROCEDURES:

Sieving Fenwick Can Elutriator Baermann Funnel Mist Sugar Flotation Sugar Centrifugation Staining Roots Greenhouse Bioassay

Select appropriate procedure for nematode species of interest.

RING: ELUTRIATION - SUGAR FLOTATION OR CENTRIFUGATION DAGGER: BAERMANN FUNNEL LINED WITH CHEESE CLOTH

MIST CHAMBER EXTRACTION -FOLIAR NEMATODE

MIST CHAMBER VARIABILITY

FENWICK CAN EXTRACTION

NEMATODE / HOST ASSOCIATION DATABASES

H. FERRIS, E. CASWELL-CHEN, B. WESTERDAHL

NEMABASE Nematode-Host Association Database (can also be obtained from ucipm website) Nematode Common-Scientific Name Database Plant Common-Scientific Name Database Lownsbery Nematode-Host Association Database **Radewald California Ornamental**

Nematode-Host Association Database Nematode Primer Database **Knowledge Planning Database**

SURVEY OF PRUNE ORCHARDS:

B. F. Lownsbery, 1974.	
97 orchards sampled.	
Pin (Paratylenchus sp.)	67%
Dagger (Xiphinema americanum)	62%
Ring (Mesocriconema sp.)	38%
Lesion (Pratylenchus vulnus)	7%

SURVEY OF WALNUT ORCHARDS: Compiled by B. F. Lownsbery from CDFA and UC records.

MIGRATORY ECTOPARASITES -

Ring (Mesocriconema sp.)	19%*
Dagger (Xiphinema americanum)	17%
Pin (Paratylenchus sp.)	6%
Spiral (Helicotylenchus sp.)	2%
MIGRATORY ENDOPARASITE -	

Lesion (Fratylenchus sp.)	51/0
SEDENTARY ENDOPARASITE -	
Root knot (<i>Meloidogyne</i> sp.)	15%*

***LIKELY TO CAUSE DAMAGE**

ROOT KNOT NEMATODE ON PROCESSING TOMATOES - SAN JOAQUIN VALLEY

NUMBER OF LARVAE/GRAM OF SOIL

FALL	PERCENT DECLINE	SPRING	INCREASE	FALL	% OF NORMAL
					YIELD
		0.01	1000 X	10.0	100
0.31	85	0.05	500 X	23.8	98
1.56	85	0.25	150 X	37.3	85
4.06	85	0.65	75 X	48.0	65
6.25	85	1.00	55 X	54.8	53
THE USE OF NEMATODE DAMAGE/ECONOMIC					
THF	RESHOLDS I	S OFTEN I	IMITED BY T	HE MET	HODS

AVAILABLE TO DETECT NEMATODES.

6

MONTHS

8

c

12

10

0

Ó

SAMPLING FOR LESION AND RING NEMATODE IN WALNUT ORCHARDS

MONTHLY SAMPLING FOR 3 YEARS 3 ORCHARDS SOLANO / YOLO COUNTIES (FARM ADVISOR WILBUR REIL) **4 SAMPLES PER MONTH OF SOIL AND ROOTS** 4 SUBSAMPLES/ SAMPLE SOIL EXTRACTION VIA ELUTRIATION/ SUGAR CENTRIFUGATION ROOT EXTRACTION IN MIST CHAMBER SOIL TEMPERATURE AND SOIL MOISTURE

GRAPE GROWING REGIONS: NORTH & CENTRAL COAST - DEWEY RASKI SAN JOAQUIN VALLEY - MIKE MCKENRY SOUTHERN CALIFORNIA - JOHN RADEWALD

XIPHINEMA INDEX ON GRAPES

REGION NEMATODE NORTH SAN JOAQ S CA DAGGER X X 0 RING X X 0 LESION X X 0 X **STUBBY ROOT** X X X X X **ROOT KNOT** CITRUS X X 0 NEEDLE X 0 0

REGION TYPE OF GRAPES NORTH SAN JOAQ S CA WINE X X 0 RAISIN X 0 0 TABLE 0 X X

SOIL REGION TYPE NORTH SAN JOAQ S CA FINE X 0 0 X MEDIUM X 0 COARSE X X 0

IRRIGATION REGION TYPE NORTH SAN JOAQ SCA NONE X 0 0 X SPRINKLER 0 0 **FLOOD/FURROW** 0 X 0 X X DRIP(LOW VOLUME) 0

