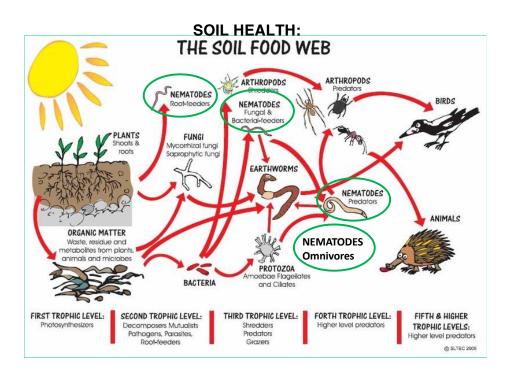

NEM 204: CULTURAL METHODS -ARE WE DOING SOMETHING NEW?

Principles of Nematology (Gerald Thorne, 1961): "It is fitting that a few words of commendation be given to the officials of the Shell Chemical Corporation and The Dow Chemical Company for their foresight in pioneering the field of soil fumigation. Their efficient, generous, cooperative, and persistent campaigns have carried the science of soil fumigation into almost every country. Those of us who had spent many years attempting to control nematodes by crop-rotation and cultural methods, often with futile, discouraging results, now realized the satisfaction of recommending D-D and EBD for the control of nematodes on certain moderateand high-priced crops."

SHOULD WE EXPECT SOMETHING ELSE TO WORK AS WELL AS A FUMIGANT?

FUMIGANTS MOVE THEMSELVES THROUGH SOIL

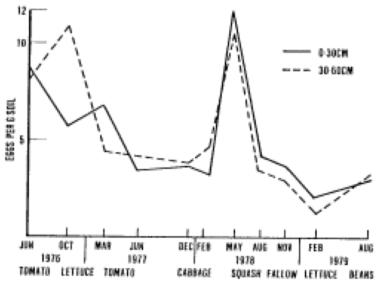

WHAT MAKES A FUMIGANT WORK, ALSO MAKES IT A VOC

NON-FUMIGANTS NEED TO BE MOVED WITH WATER OR TILLAGE

ARE WE REINVENTING THE WHEEL? **OR DO WE KNOW SOMETHING THAT GERALD THORNE** DIDN'T? BETTER UNDERSTANDING OF SOIL HEALTH **NEW TACTICS FOR CROP ROTATION** IMPROVEMENTS IN DIAGNOSTIC TECHNIQUES MOLECULAR METHODS TO ID SPECIES VARIETY SELECTION WITH COMPUTER DATABASES **ADVANCES IN USE OF RESISTANT VARIETIES / BIOFUMIGATION / TRAP CROPPING** BETTER UNDERSTANDING OF NEMATODE BIOLOGY EFFECTS OF TEMPERATURE **ON NEMATODE REPRODUCTION ONLINE SOIL TEMPERATURE DATA FROM CIMIS WEATHER STATIONS (DATE OF** PLANTING) HOW TO USE DEGREE DAYS TO PREDICT **POPULATION INCREASES (DATE OF HARVEST) RENEWED INTEREST IN SOIL AMENDMENTS /** NATURAL PRODUCTS

CULTURAL PRACTICES:

CROP ROTATION RESISTANT VARIETIES COVER CROPS FALLOWING DATE OF PLANTING & HARVEST FLOODING BIOFUMIGATION TRAP CROPS REMOVING PLANTS WITH SYMPTOMS WEED CONTROL (NEMABASE) SOIL AMENDMENTS



CROP ROTATION FOR NEMATODE MANAGEMENT: BASIC INFORMATION NEEDED:

NEMATODES PRESENT IN FIELD HOST RANGE OF SPECIES PRESENT EXPECTED RATE OF POPULATION INCREASE EXPECTED RATE OF POPULATION DECLINE POSSIBLE CROPS AVAILABILITY OF RESISTANT VARIETIES GROWING SEASON (TIME OF PLANTING)

NEMATODE DAMAGE THRESHOLD IMPORTANCE OF WEEDS

EFFECT OF CROP ROTATION ON POPULATION DENSITY OF SUGARBEET CYST NEMATODE:

CROP ROTATION

	FIRST YEAR			D YEAR	THIRD YEAR		
	FALL/ WINTER	SPRING/ SUMMER	FALL/ WINTER	SPRING/ SUMMER	FALL/ WINTER	SPRING/ SUMMER	
SECTION A	Weed Free Fallow	Nematode Resistant Tomatoes	Other Crops	Other Crops	Weed Free Fallow	Weed Free Fallow	
SECTION B	Other Crops	Weed Free Fallow	Weed Free Fallow	Nematode Resistant Tomatoes	Weed Free Fallow	Other Crops	
SECTION C	Weed Free Fallow	Other Crops (with soil amended to reduce damage)	Weed Free Fallow	Weed Free Fallow	Other Crops	Nematode Resistant Tomatoes	

USE OF RESISTANT & TOLERANT VARIETIES:

- Immune plants do not allow nematode attack, including initial root invasion.
- **Resistant or nonhost** plants may be invaded by nematodes and may show damage, but chemical or physical unsuitability of the plant will prevent population increases.
- Susceptible plants allow normal nematode reproduction and may or may not tolerate nematode attack. Tolerant host - plants are able to withstand nematode

attack.

Intolerant host - plants are more likely damaged by nematode attack.

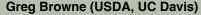
WALNUT ROOTSTOCKS

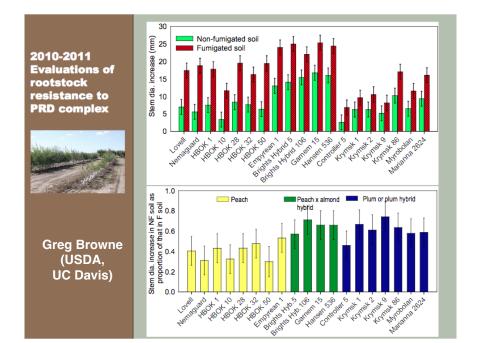
WALNUT ROOTSTOCH	Northern Meloidogyne hapla	Root Knot Southern Meloidogyne incognita	Javanese Meloidogyne javanica	Peanut Meloidogyne arenaria	Lesion Pratylenchus vulnus	Ring Criconemella xenoplax
English					SUSCEPTIBLE,	
Black		SUSCEPTIBLE,			INTOLER	
Paradox Hybrid		TOLERA	NT			

STONE FRUIT AND NUT ROOTSTOCKS

ROOTSTOCK		Root Knot					
	Northern Meloidogyne hapla	Southern Meloidogyne incognita	Javanese Meloidogyne javanica	Peanut Meloidogyne arenaria	Lesion Pratylenchus vulnus	Ring <i>Criconemella</i> xenoplax	Dagger Xiphinema americanum
Lovell	SUSCEPTIBLE, TOLERANT				SUSCEPT	NBLE.	
Nemaguard	NONHOST	NONHOST	NONHOST	NONHOST	IN	TOLEBANT	
Marianna 2624	NONHOST	NONHOST	NONHOST	NONHOST			
Myrobalan 29C	NONHOST	NONHOST	NONHOST	NONHOST			

The replant problems...


- Replant disease (RD) Microbe-induced growth suppression; incidence nearly universal in *Prunus* after *Prunus*, but severity varies greatly
- Plant-parasitic nematodes (ring, lesion, root knot), approx. 35% of almond and fresh stone fruit acreage, 60% of cling peach acreage infested (McKenry)
- Aggressive pathogens, pests (Phytophthora, Armillaria, Verticillium, Ten-Lined June Beetle) –localized, not managed completely by fumigation
- Abiotic factors (physical, chemical conditions related to previous production)



Healthy tree RD-affected tree
Symptoms of replant disease on almond

Key nematode parasites on Prunus

https://fps.ucdavis.edu/index.cfm

Grape Rootstocks

	Lesion	Root knot*	Dagger (X.i.)	Ring	Pin	Citrus
Dogridge	S	R	S	S	S?	MR
Ramsey	R?	R	R	S	S?	S
1613C	S	MR	R	S	S?	S
Harmony	S	R	S	S	S?	S
Freedom	S	R	R	S	S?	S
Scwarzm	S	S	R	S	S?	S
K51-32	R?	MR	R	S	S?	S
Teleki 5C	S	MR	S	S	S?	S
039-16	S	S	R	S	S?	S

Breeding program:

039-16 – Released in 1991 by H. P. Olmo RS-3, RS-9 – Released in 2003 by D. Ramming and M. V. McKenry UCDGRN1, UCDGRN2, UCDGRN3, UCDGRN4, UCDGRN5 – Released in 2008 by

M. A. Walker (H. Ferris)

USDA 10-17A, USDA 10-23B, USDA 6-19B - Released by USDA

Nematodes:

- Cx Criconemoides xenoplax (ring)
- Pv Pratylenchus vulnus (lesion)
- Ts Tylenchulus semipenetrans (citrus)
- Xi Xiphinema index (dagger, transmits grapevine fanleaf virus)
- Xa Xiphinema americanum (dagger, transmits virus)
- Mi Meloidogyne incognita Race 3 (southern or cotton root-knot)
- Ma *Meloidogyne arenaria* virulent on Harmony rootstock (peanut root-knot)
- Mia Meloidogyne incognita virulent on Harmony rootstock (southern root-knot)
- Mj Meloidogyne javanica (Javanese root-knot)
- Mc Meloidogyne chitwoodi (Columbia root-knot)

Resistance level:

- R Resistant
- **MR Moderately Resistant**

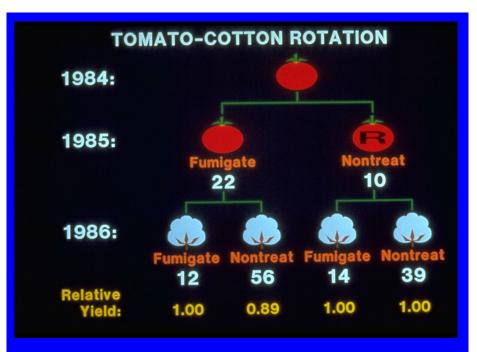
S – Susceptible

* not *M. arenaria*

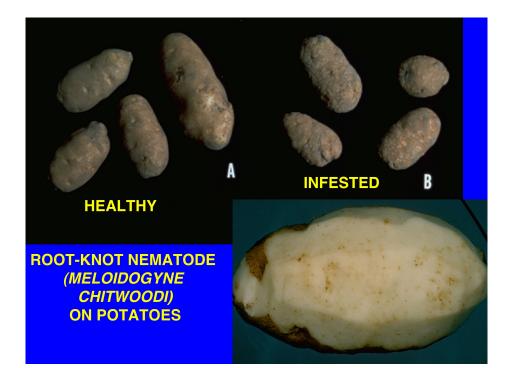
Grape Rootstock Resistance Breeding Programs:

Rootstock	Сх	Pv	Ts	Xi	Xa	Mi	Ма	Mih	Мj	Мс
O39-16	S	S	S	R						
RS-3	MR	R	MR	S		R	R	R	R	MR
RS-9	MR	R	MR	S		R	R	R	R	
UCDGRN1	R	R	R	R		R	R	R		
UCDGRN2	MR	MR	MS	R		R	R	R		
UCDGRN3	MS	MR	MS	R		R	R	R		
UCDGRN4	MR	MR	MR	R		R	R	R		
UCDGRN5	MS	MS	R	R		R	R	R		
USDA 10-17A	MS	R	R	R		MR			R	MR
USDA 10-23B	MR	R	R	R		R			R	R
USDA 6-19B	MR	R	R	MR	R	R			R	MR
					-					

New Rootstock Summary

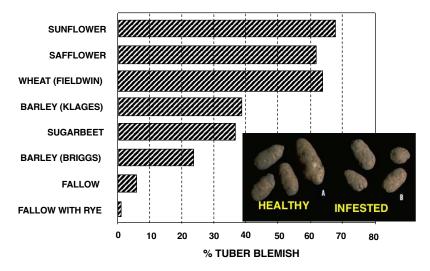

	Citrus Nematode	Ring Nematode	Phylloxera Nodosities	Rooting Depth
GRN-1	R	R	HR	D
GRN-2	MS	S	HR	S
GRN-3	R	S	R	Μ
GRN-4	R	MS	R	Μ
GRN-5	R	MR	MS	D

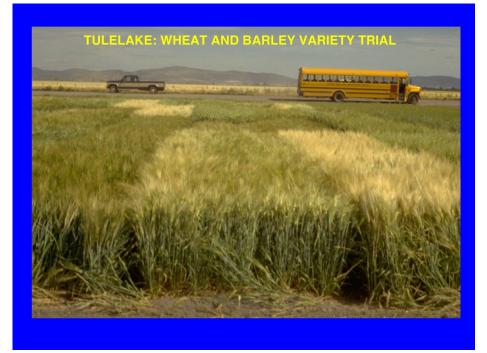
GRN Parentages

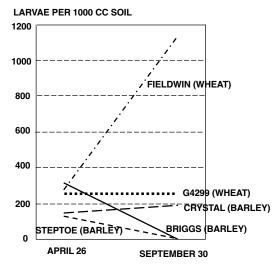

- GRN-1 = 8909-05 rupestris x rotundifolia 'Cowart'
- GRN-2 = 9363-16 (*rufotomentosa* x (Dog Ridge x Riparia Gloire)) x Riparia Gloire
- GRN-3 = 9365-43 (*rufotomentosa* x (Dog Ridge x Riparia Gloire)) x *champinii* c9038
- GRN-4 = 9365-85 (*rufotomentosa* x (Dog Ridge x Riparia Gloire)) x *champinii* c9038
- GRN-5 = 9407-14 (Ramsey x Riparia Gloire) x champinii c9021

Root-Knot Nematode Resistant Varieties: Tomatoes - yes Sweet potatoes - yes Potatoes - no Carrots - under development Cole Crops - no Beans - yes and under development Sugarbeets - yes

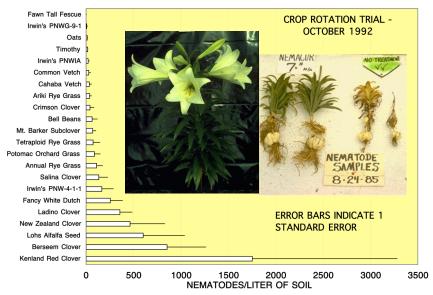
Potential problems if other nematodes such as stubby root or needle are present in same field







EFFECT OF PRECEEDING CROP ROTATION ON NEMATODE TUBER BLEMISH IN POTATOES



POTATO CROPPING SYSTEM IN TULELAKE: COLUMBIA ROOT-KNOT NEMATODE ON WHEAT AND BARLEY

LESION NEMATODE (PRATYLENCHUS PENETRANS) ON EASTER LILY

FALLOW

NO CROP - NO WEEDS - NEMATODES STARVE EFFECTIVENESS - EXCELLENT COST - ??

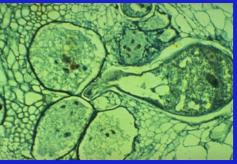
	RATE OF	YEARS
	DECLINE/	OF
	YEAR	FALLOW
ROOT-KNOT	85 %	0.25 - 2
SUGAR BEET CYST	25-50 %	4 - 8
STEM AND BULB		4
DAGGER (X. INDEX)		10

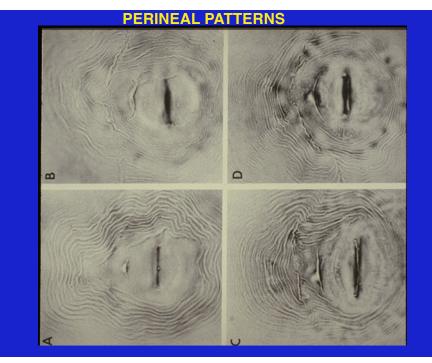
????

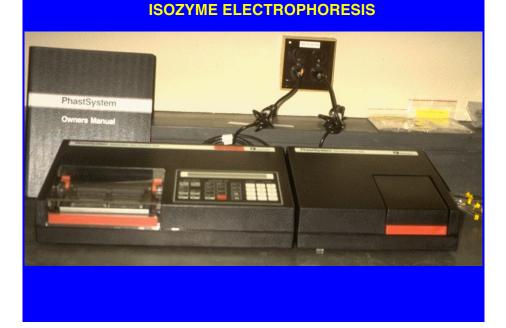
LESION CITRUS STUBBY ROOT FOLIAR RING DAGGER NEEDLE SHEATH

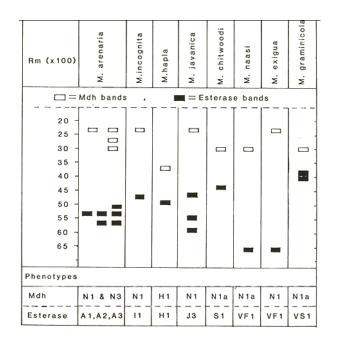
DRY VS WET, SOIL DISTURBANCE, COST OF WEED CONTROL

TO SELECT A ROTATION CROP OR A COVER CROP YOU NEED TO KNOW WHICH SPECIES YOU HAVE

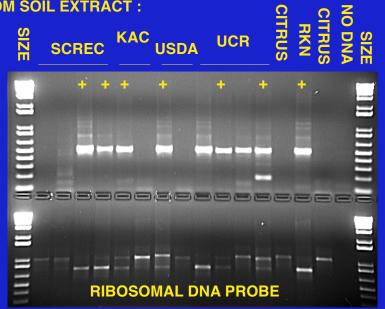

SUMMARY OF HOST-NEMATODE RESPONSES ON COVER CROPS:


Northern Meloidogyne hapla		Root Knot Southern Meloidogyne incognita	Javanese Meloidogyne javanica	Peanut Meloidogyne arenaria	
Marigold	Host	Host	Host, Trap Cro	pNon Host	
Sudan, SS-222	Poor Host	Good Host	Host	Host	
Barley, Columbia	Host	Poor Host	Good Host	Host	
Cahaba White Vetch	Good Host	Poor Host	Host, Trap Crop	Host	
Salina Sweet Clover	Host	Poor Host	Poor Host	Nonhost	
Moapa Alfalfa	Susceptible	Poor Host	Poor Host	Nonhost	
Coker 916 Wheat					
Nova II Vetch	+	-	-	-	
Blando Brome Grass	Host	Nonhost			


DATA SUMMARY BY M.V. MCKENRY, 1991 + = PROBABLE HOST, - = PROBABLE NONHOST, BASED ON DATA FROM GEORGIA AND S. CAROLINA




ROOT-KNOT NEMATODE SPECIES ID

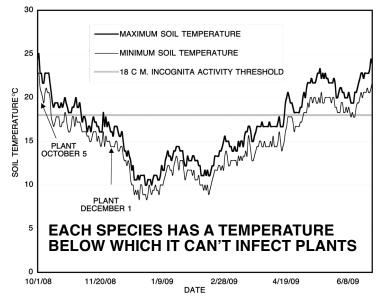


MOLECULAR AND BIOCHEMICAL TECHNIQUES TO IDENTIFY ROOT-KNOT NEMATODE V. WILLIAMSON, J. QIU, B. WESTERDAHL

MOLECULAR TECHNIQUES TO ID ROOT-KNOT NEMATODE FROM SOIL EXTRACT :

Identification of Lesion Nematode to Species: Presence or absence of sperm in the spermatheca. Presence or absence of males in the sample.

Multiplex PCR with mixture of DNA from 4 species of lesion nematodes (*P. penetrans, P. vulnus, P. scribneri and P. thornei*)


THE EFFECTS OF TEMPERATURE ON NEMATODE BIOLOGY

TIME OF PLANTING:	MINIM	UM FOR	OPTIMUM
	INFEC-	REPRO-	FOR ACTIVITY
	TION	DUCTION	V
ROOT KNOT			
MELOIDOGYNE SP.			
M. CHITWOODI	45F	45F	68-77F
(COLUMBIA)	(6C)	(6C)	(20-25C)
M. HAPLA	54F	54F	77-86F
(NORTHERN)	(12C)	(12C)	(25-30C)
M. INCOGNITA	65F	50F	76-90F
(SOUTHERN)	(18C)	(10C)	(25-32C)
SUGARBEET CYST			
HETERODERA	50F	46F	70-81F
SCHACHTII	(10C)	(8C)	(21-27C)
NEEDLE LONGIDORU	S AFRIC	ANUŚ	
DAMAGE TO LETTU	CE SEED	LINGS IS I	
SOILTEMPERATUR	ES LESS	THAN 22C	(72F)

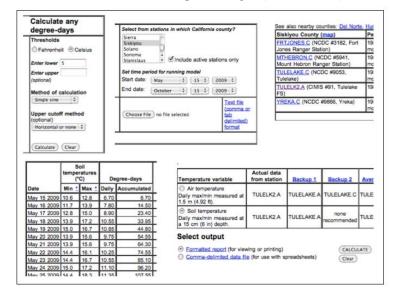
Cover / Rotation Crops

	Lesion	Root knot	Dagger	Ring	Citrus	Pin
Sudan	N	Η	N	Ν	N	?
Barley	N	H-	N	Н	N	?
Cahaba Vetch	Н	H-	N	Η	N	?
Alfalfa	i N	H-	Н	Н	N	?

DELAYED PLANTING CAN REDUCE DAMAGE

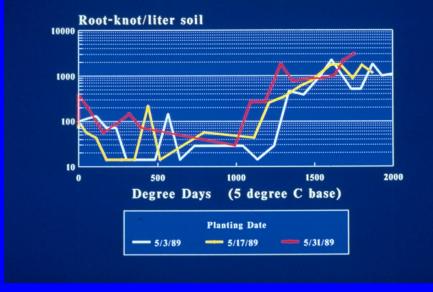
MINIATURE DATA LOGGERS

NOT FOOLPROOF


USING DEGREE DAYS TO PREDICT POPULATION INCREASES (DATE OF HARVEST)

DEGREE DAYS = DAILY HIGH + DAILY LOW	- DEVELOP-
(OR HEAT UNITS)	MENTAL
2	THRESHOLD
	(OR BASE)

NEMATODE DEGREE DAYS PER GENERATION:

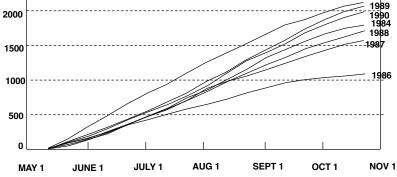

ROOT KNOT (MELOIDOGYNE SP.) M. INCOGNITA 600 DD, BASE 10C M. CHITWOODI 600 DD, BASE 5-6C

SUGARBEET CYST HETERODERA SCHACHTII (450 DD, BASE 8C)

Calculate Nematode Degree Days (clockwise)

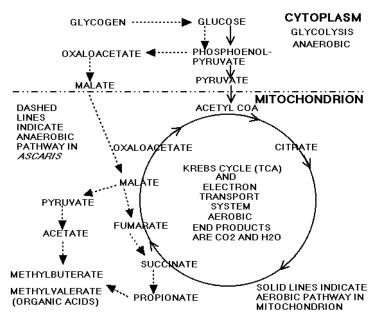
1989 Nematode Development Study

EARLY HARVEST AND VARIETY SELECTION CAN REDUCE DAMAGE


NEMATODE TUBER BLEMISH (%) 12 RUSSET BURBANK 10 8 EALTHY INFESTED 6 CALGOLD 4 2 NORGOLD RUSSET 0 9/16 9/22 9/29 10/6 10/13 10/20 10/27 11/3 11/10 HARVEST DATE

FROM MAY 10 (5 DEGREE C BASE)

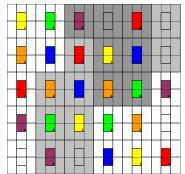
1985

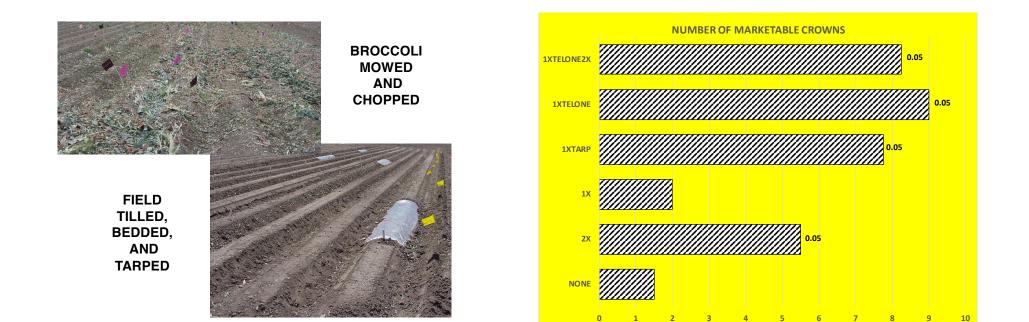

2500

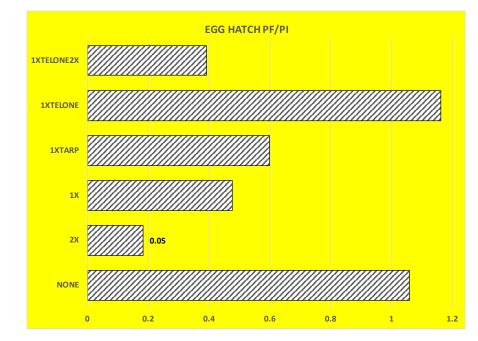
NEMATODE DEGREE DAYS

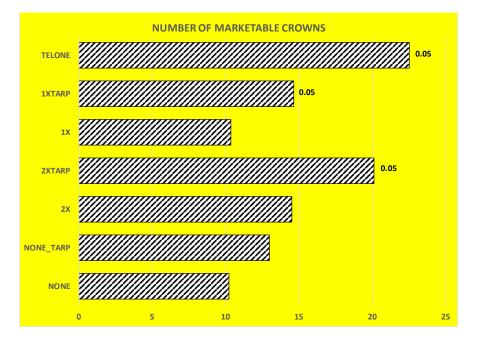
FLOODING: AEROBIC VS ANAEROBIC METABOLISM

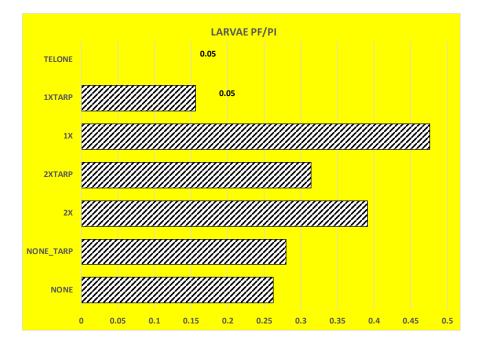
BIOFUMIGATION EVALUATION OF BROCCOLI RESIDUE FOR SUGARBEET CYST NEMATODE CONTROL BRASSICACEAE PRODUCE GLUCOSINOLATES BROCCOLI DEGRADATION RELEASES ISOTHIOCYANATES METAM SODIUM IS A SYNTHETIC ISOTHIOCYANATE


BROCCOLI BIOFUMIGATION TRIAL RANDOMIZED COMPLETE BLOCK 4 REPS PER TREATMENT HARVESTED PLOTS 10 FEET LONG X 30 INCHES WIDE (COLORED AREAS)


HARVEST MATURE BROCCOLI MECHANICALLY MOW AND CHOP STALKS


STAKE OUT 6 TREATMENTS: NONE (CHOPPED BROCCOLI WILL BE MOVED TO 2X TREATMENT) 1X BROCCOLI REDISUE 2X BROCCOLI RESIDUE 1X BROCCOLI RESIDUE WITH TARP 1X BROCCOLI WITH 1X TELONE (9 GPA) 1X BROCCOLI WITH 2X TELONE (18 GPA)

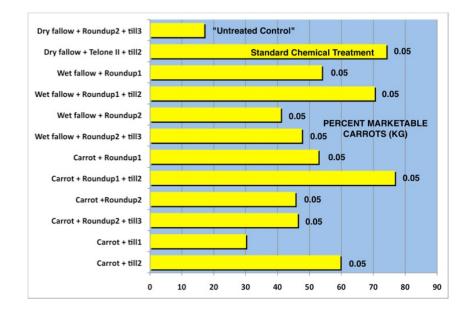

MOVE STALKS FROM YELLOW TO BLUE TILL FIELD MAKE BEDS INJECT TELONE INTO GREEN AND RED PLOTS TARP PURPLE PLOTS FOR 2 WEEKS REMOVE TARPS AND PLANT BROCCOLI

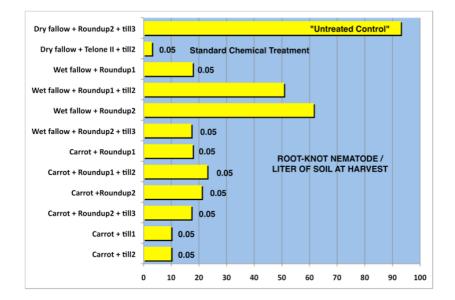

> 2 WEEKS TOTAL BETWEEN CROPS (GROWER STANDARD PRACTICE)

TRAP CROPPING FOR SEDENTARY ENDOPARASITIC NEMATODES (ROOT KNOT AND CYST):

JUVENILE ENTERS ROOT AND BEGINS FEEDING IMMATURE FEMALE NO LONGER ABLE TO MOVE DESTROY CROP BEFORE FEMALE LAYS EGGS PLANT COMMERCIAL CROP

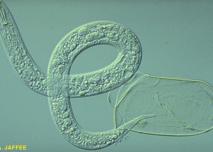
SOUTH COAST RESEARCH AND EXTENSION CENTER TRAP CROP TRIAL 5 REPLICATES RANDOMIZED COMPLETE BLOCK DESIGN EACH REP - 1 ROW WIDE 20 FEET LONG (6 METERS)





Treatments (Numbers Indicate Weeks After Carrot Germination)

Dry fallow + Roundup2 + till3 Dry fallow + Telone II + till2 Wet fallow + Roundup1 Wet fallow + Roundup1 + till2 Wet fallow + Roundup2 Wet fallow + Roundup2 Wet fallow + Roundup2 + till3 Carrot + Roundup1 + till2 Carrot + Roundup1 + till2 Carrot + Roundup2 + till3 Carrot + till1 Carrot + till1



POSSIBLE MODES OF ACTION OF SOIL AMENDMENTS / NATURAL PRODUCTS:

ADDITION OF BENEFICIAL MICROBIALS STIMULATION OF NEMATOPHAGOUS FUNGI COMPETITION FOR ROOT SURFACE REDUCE STRESS ON NEMATODE INFESTED PLANTS (VIA IMPROVED SOIL STRUCTURE, SOIL WATER RETENTION, PLANT NUTRITION) PRODUCE NEMATICIDAL BREAKDOWN PRODUCTS

ASD (Anaerobic Soil Disinfestation)

